28 research outputs found

    A 2D Chaotic Oscillator for Analog IC

    Get PDF
    In this paper, we have proposed the design of an analog two-dimensional (2D) discrete-time chaotic oscillator. 2D chaotic systems are studied because of their more complex chaotic behavior compared to one-dimensional (1D) chaotic systems. The already published works on 2D chaotic systems are mainly focused either on the complex analytical combinations of familiar 1D chaotic maps such as Sine map, Logistic map, Tent map, and so on, or off-the-shelf component-based analog circuits. Due to complex hardware requirements, neither of them is feasible for hardware-efficient integrated circuit (IC) implementations. To the best of our knowledge, this proposed work is the first-ever report of an analog 2D discrete-time chaotic oscillator design that is suitable for hardware-constrained IC implementations. The chaotic performance of the proposed design is analyzed with bifurcation plots, the transient response, 2D Lyapunov exponent, and correlation coefficient measurements. It is demonstrated that the proposed design exhibits promising chaotic behavior with low hardware cost. The real-world application of the proposed 2D chaotic oscillator is presented in a random number generator (RNG) design. The applicability of the RNG in cryptography is verified by passing the generated random sequence through four standard statistical tests namely, NIST, FIPS, TestU01, and Diehard

    Design, Analysis, and Application of Flipped Product Chaotic System

    Get PDF
    In this paper, a novel method is proposed to build an improved 1-D discrete chaotic map called flipped product chaotic system (FPCS) by multiplying the output of one map with the output of a vertically flipped second map. Two variants, each with nine combinations, are shown with trade-off between computational cost and performance. The chaotic properties are explored using the bifurcation diagram, Lyapunov exponent, Kolmogorov entropy, and correlation coefficient. The proposed schemes offer a wider chaotic range and improved chaotic performance compared to the constituent maps and several prior works of similar nature. Wide chaotic window and improved chaotic complexity are two desired characteristics for several security applications as these two characteristics ensure enhanced design space with elevated entropic properties. We present a general Field-Programmable Gate Array (FPGA) design framework for the hardware implementation of the proposed flipped-product schemes and the results show good qualitative agreement with the numerical results from MATLAB simulation. Finally, we present a new Pseudo Random Number Generator (PRNG) using the two variants of the proposed chaotic map and validate their excellent randomness property using four standard statistical tests, namely NIST, FIPS, TestU01, and Diehard

    Cascading CMOS-Based Chaotic Maps for Improved Performance and Its Application in Efficient RNG Design

    Get PDF
    We present a general framework for improving the chaotic properties of CMOS-based chaotic maps by cascading multiple maps in series. Along with two novel chaotic map topologies, we present the 45 nmnm designs for four CMOS-based discrete-time chaotic map topologies. With the help of the bifurcation plot and three established entropy measures, namely, Lyapunov exponent, Kolmogorov entropy, and correlation coefficient, we present an extensive chaotic performance analysis on eight unique map circuits (two under each topology) to show that under certain constraints, the cascading scheme can significantly elevate the chaotic performance. The improved chaotic entropy benefits many security applications and is demonstrated using a novel random number generator (RNG) design. Unlike conventional mathematical chaotic map-based digital pseudo-random number generators (PRNG), this proposed design is not completely deterministic due to the high susceptibility of the core analog circuit to inevitable noise that renders this design closer to a true random number generator (TRNG). By leveraging the improved chaotic performance of the transistor-level cascaded maps, significantly low area and power overhead are achieved in the RNG design. The cryptographic applicability of the RNG is verified as the generated random sequences pass four standard statistical tests namely, NIST, FIPS, Diehard, and TestU01

    Semiconductor Device Modeling and Simulation for Electronic Circuit Design

    Get PDF
    This chapter covers different methods of semiconductor device modeling for electronic circuit simulation. It presents a discussion on physics-based analytical modeling approach to predict device operation at specific conditions such as applied bias (e.g., voltages and currents); environment (e.g., temperature, noise); and physical characteristics (e.g., geometry, doping levels). However, formulation of device model involves trade-off between accuracy and computational speed and for most practical operation such as for SPICE-based circuit simulator, empirical modeling approach is often preferred. Thus, this chapter also covers empirical modeling approaches to predict device operation by implementing mathematically fitted equations. In addition, it includes numerical device modeling approaches, which involve numerical device simulation using different types of commercial computer-based tools. Numerical models are used as virtual environment for device optimization under different conditions and the results can be used to validate the simulation models for other operating conditions

    50 years of rice breeding in Bangladesh: genetic yield trends

    Get PDF
    To assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001–2002 to 2020–2021 in multi-locations trials. In such a series of trials, yield may increase over time due to (i) genetic improvement (genetic trend) and (ii) improved management or favorable climate change (agronomic/non-genetic trend). In both the winter and monsoon seasons, we observed positive genetic and non-genetic trends. The annual genetic trend for grain yield in both winter and monsoon rice varieties was 0.01 t ha−1, while the non-genetic trend for both seasons was 0.02 t ha−1, corresponding to yearly genetic gains of 0.28% and 0.18% in winter and monsoon seasons, respectively. The overall percentage yield change from 1970 until 2020 for winter rice was 40.96%, of which 13.91% was genetic trend and 27.05% was non-genetic. For the monsoon season, the overall percentage change from 1973 until 2020 was 38.39%, of which genetic and non-genetic increases were 8.36% and 30.03%, respectively. Overall, the contribution of non-genetic trend is larger than genetic trend both for winter and monsoon seasons. These results suggest that limited progress has been made in improving yield in Bangladeshi rice breeding programs over the last 50 years. Breeding programs need to be modernized to deliver sufficient genetic gains in the future to sustain Bangladeshi food security

    Proceedings of the Virtual 3rd UK Implementation Science Research Conference : Virtual conference. 16 and 17 July 2020.

    Get PDF

    Development of LoRa Communication System for Effective Transmission of Data from Underground Coal Mines

    No full text
    Underground coal mining is a challenging and hazardous occupation that requires constant monitoring of environmental parameters to ensure the safety of miners. A handful of research has been carried out in developing wireless monitoring devices to monitor underground mine workings using Wi-Fi and ZigBee, which has limitations such as limited range, interference, reliability, power consumption, and security. The main objective of this study is to develop an Underground Gas Monitoring Device using LoRa communication for the effective transmission of monitored data. The testing was carried out in an underground mine model to measure the propagation of the LoRa signal with a line of sight and non-line of sight. It was observed that the system performs fairly well in both situations. During testing, it was observed that there was a drop in RSSI at 14 m for non-line of sight, and beyond 17 m no signal was received. Hence, for every 15 m, a booster is required to be placed to maintain efficient and reliable propagation of signals. In the event of an increase in gas level beyond the threshold limit in the underground mine, the developed system actuates the siren in the underground, boosters, and on the surface
    corecore